Heat-stressed induced gene expression of swan-2 gene in C. elegans

Udata S.1, Wilson J.2, Gong, S.3,4, Feng Z.3

1Canyon Crest Academy; 2Academy of Our Lady of Peace; 3Boz Life Science Research and Teaching Institute; 4University of California San Diego Extension

Abstract

We conducted our study to understand how the swan-2 gene was affected in C. elegans under heat stress, and how these findings could help study the potential correlation between stress, protein aggregation and aging. According to our results, the gene swan-2 was expressed slightly less in the stressed experimental group as opposed to the control group. However, this difference was determined to be statistically insignificant. Therefore, we concluded that the swan-2 gene is not a factor that contributes to protein aggregation in response to heat.

Introduction

The overall purpose of this project was to determine if protein aggregation contributes to aging. We hypothesized that the excessive or insufficient expression of certain genes may contribute to protein aggregation.1 Specifically, we performed this study to investigate how the swan-2 gene expression level changes in response to heat in Caenorhabditis elegans. The swan-2 gene is a regulator for heat and osmotic stress in C. elegans and is involved in kinase signaling.2

Significance:
The basis behind the study of aging in C. elegans was to provide an explanation to how stress affects aging in human beings. In addition, aging causes extensive bodily changes, which need to be accounted for in personalized medicine.

Discussion

Considering Figure 3, the dark colors corresponding to expression levels of the swan-2 gene in both experimental and control conditions suggest that there is little difference between the two groups.

This conclusion was verified by the 2⁻ΔΔCt test, the ratio value of which was 0.781 (Fig. 4).

Because of this, there was not a statistically significant difference between the control group and the heat-stressed group. We concluded that the swan-2 gene expression levels are not affected by heat.

Future Direction

In future experiments, we will introduce different stressors, such as changes in light, food, temperature, and oxidative damage (limiting or increasing oxygen supply).

We will conduct a lifetime assay, measuring the health status and survival rate at different ages of the C. elegans under these stressed conditions.

Finally, we will conduct more comprehensive screening past qPCR, such as RNA sequencing and protein extraction.1

Limitations

Limitations for this study include the use of two plate conditions, heat-stressed and controlled, which does not account for individual variations between worms.

Bibliography

- C. elegans hermaphrodite under microscope. This photo was taken at 10X magnification.
- Caenorhabditis elegans are a widely-used species of model organism because they share up to 71% of their genome with other organisms (Fig. 2). In addition, they have very short lifespans of around two weeks, allowing us to easily study their development and survival rate at multiple different ages. Finally, the entire C. elegans genome has been sequenced and thoroughly studied, allowing gene selection to be very specific.
- We used the 2⁻ΔΔCt method to calculate the fold difference of gene expression from the qPCR data (Fig. 4).
- The roundworms were separated into two conditions: control and experimental. Both groups of worms were incubated at 21℃ on NGM plates; then the control group was kept at 23℃, while the experimental group of C. elegans was moved to a higher temperature of 33℃ for 3 hours.
- All worms were collected for each plate, then their RNA was extracted and purified.
- qRT-PCR primers for swan-2 (5'-3'):

 Forward: UGAGTATCCGGGCTCCAC
 Reverse: GGAATCGTTGACCCTCTGC

- We used the t-test to verify the statistical significance of the fold change in gene expression.
- The swan-2 gene was expressed slightly less in the stressed experimental group as opposed to the control group. However, this difference was determined to be statistically insignificant. Therefore, we concluded that the swan-2 gene is not a factor that contributes to protein aggregation in response to heat.