No significant change in expression of *tay* in *Drosophila melanogaster* after exposure to GenX

Wang J.1, Kobayashi C.2, Fowzy Z.2, Cassel N.3, Quiaoit J.4, Suresh-Kumar N.5,6

1Henry M. Gunn High School, 2Westview High School, 3Corbett High School, 4Sanchez Buena Vista High School, 5Boz Life Science Research and Teaching Institute, 6UC San Diego Extension.

Summary
- Exposed male and female *D. melanogaster* to the toxic chemical GenX
- Measured changes in *tay* expression in *D. melanogaster* brains as a result of exposure to GenX and baseline expression of *tay* between males and females using qRT-PCR
- *tay* expression has no significant changes between any of the conditions

Abstract

Male and female organisms exhibit sexually dimorphic gene expression, resulting in potentially different responses to stressors. Most scientific studies are done with male organisms, ignoring this variance. Here we investigate the expression of *tay* in the male and female brains of the *D. melanogaster* at baseline and after exposure to GenX, a potentially toxic chemical, using qRT-PCR. Male *D. melanogaster* upregulate *tay* 1.24-fold after exposure to GenX (p=0.866) while females upregulate *tay* by 1.68-fold (p=0.548). Female *D. melanogaster* downregulate *tay* 3.21-fold compared to males at control conditions (p=0.057). Our conclusion is that there is no difference in gene expression.

Introduction

Hypothesis
- After exposure to GenX, *tay* will be upregulated in *D. melanogaster*.
- *tay* will be upregulated in female *D. melanogaster* compared to male *D. melanogaster*

- Common model organism
 - Chosen for short lifespan, low maintenance, evolutionary similarities with human disease genes,[4] and sexually dimorphic phenotypes
- GenX
 - Member of per- and polyfluoroalkyl substance (PFAS) group, man-made chemical compounds
 - GenX is used commercially in food packaging, nonstick coatings, and firefighting foam.
 - While information about its health effects is limited, GenX is said to negatively impact animals as a toxicant.[5]
- *tay*
 - Associated with the organization of disc-derived wing veins (morphogenesis), the reduction of EGF pathway activity, and visual pattern orientation[1]
 - Functionally similar to GM23216 (*D. sechellia*) and serine-rich adhesin for planar (*D. muntiana*)[1]
 - *tay* has proposed interactions with the Extracellular Regulated Kinase[2].
 - *tay* is found on the X-chromosome

Materials and Methods

Maintenance of drosophila melanogaster

Flies were maintained between 22-25°C and separated by sex 5th post-eclosion

- **Control:** Flies fed cornmeal based food [7] for 7 days.
- **Experimental:** Flies exposed to GenX through cornmeal food, at 1000 mg/kg per day for 7 days.

Flies were sacrificed by freezing at -80°C, and brains were dissected and pooled, with a 100 brains per sample

RNA was isolated using RNeasy kit (Qiagen).

qRT-PCR

- **tay Primers**
 - Forward: 5’-AGCCACAGTGGCGAAAGAAGTCT-3’
 - Reverse: 5’-CGATTTGGCGGAAACATTGG-3’

Data Analysis

- STRING protein interactions and gene homology analysis was done to learn more about the gene function and interactions
- *tay* was normalized to Actin
- Fold difference in gene expression was calculated using 2-ΔΔCT
- ΔΔCT was found for the different conditions that were compared by taking the ΔCT difference between experimental condition and control condition for both males and females, as well as taking the ΔCT difference between control female and control males.
- A Student's t-test was conducted using the ΔCT values. p value <0.05 was considered significant.

Results

- Figure 3. Diagram showing the proteins that interact with *tay*. Proteins connected to *tay* are generally regulatory proteins related to immunity. This figure was generated in STRING (https://string-db.org/).

- Heatmap and fold change show (Figure 4):
 - Lower expression of *tay* in female *D. melanogaster* compared to male ones in both control and experimental conditions
 - Upregulation of *tay* in both male and female *D. melanogaster* in the experimental condition compared to the control condition
 - However, p-values for all comparisons are larger than the 0.05 threshold, so none of the observed differences is of statistical significance, and the null hypotheses were accepted

- Upregulation of *tay* in *D. melanogaster* could result in changes to:
 - Adult locomotive capabilities
 - Changes to proper wing disk and other tissue development as a result of *tay* being an agonist for the EGF signaling in *D. melanogaster*

- No significant difference in *tay* levels across the different fly groups indicate the above functions and processes are likely not affected by sex or GenX exposure.

Discussion and Conclusion

- Fruit flies were exposed to only one concentration of GenX. Further experiments that expose fruit flies to different concentrations of GenX should be conducted.

- This study only looks at gene expression in pooled fly brains. We can look at individual fly brain gene expression patterns in the future.

- Expression of individual genes were analyzed. Further experiments can look at how GenX affects a group of genes involved in the same pathway, so we can better understand how GenX interacts with certain pathways

- *D. melanogaster* is evolutionary distant from *H. sapiens*. Therefore, other model organisms that are more similar to *H. sapiens* should be used in experiments where they are exposed to GenX to better understand how GenX may impact humans.

Limitations and Future Inquiry

- Fruit flies were exposed to only one concentration of GenX. Further experiments that expose fruit flies to different concentrations of GenX should be conducted.

- This study only looks at gene expression in pooled fly brains. We can look at individual fly brain gene expression patterns in the future.

- Expression of individual genes were analyzed. Further experiments can look at how GenX affects a group of genes involved in the same pathway, so we can better understand how GenX interacts with certain pathways

- *D. melanogaster* is evolutionary distant from *H. sapiens*. Therefore, other model organisms that are more similar to *H. sapiens* should be used in experiments where they are exposed to GenX to better understand how GenX may impact humans.

Sources